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a b s t r a c t

The present work deals with the fluid flow simulation and thermal analysis of a two-dimensional heat
recovery system using porous media. A basic high-temperature flow system is considered in which
a high-temperature non-radiating gas flows through a random porous matrix. The porous medium, in
addition to its convective heat exchange with the gas, may absorb, emit and scatter thermal radiation. It
is desirable to have large amount of radiative heat flux from the porous segment in the upstream
direction (towards the thermal system). The lattice Boltzmann method (LBM) is used to simulate fluid
flow in the porous medium. The gas and solid phases are considered in non-local thermal equilibrium,
and separate energy equations are applied to these phases. Convection, conduction and radiation heat
transfers take place simultaneously in solid phase, but in the gas flow, heat transfer occurs by conduction
and convection. In order to analyze the thermal characteristics of the heat recovery system, volume-
averaged velocities through the porous matrix obtained by LBM are used in the gas energy equation and
then the coupled energy equations for gas and porous medium are numerically solved using finite
difference method. For computing of radiative heat flux in the porous medium, discrete ordinates
method is used to solve the radiative transfer equation. Finally the effect of various parameters on the
performance of porous heat recovery system is studied.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Heat transfer efficiency enhancement in high temperature
systems is a great desire for engineers. Over the years, many
researchers have studied energy recovery by means of porous
media to capture waste heat from exhaust gases [1,2]. The mech-
anism of this phenomenon is based on energy conversion between
gas enthalpy and thermal radiation. This heat exchange consists of
two-heat transfer processes: (a) convection between gas flow and
porous media due to the large surface area of the porous medium
and high heat transfer coefficient, (b) radiation from the porous
mediumwhose emissive power is much higher than that of gases. A
schematically illustration of this process is shown in Fig. 1. The
similar phenomenon is used in porous radiant burners and leaded
to increase in their efficiencies [3]. There are several studies about
heat recovery in thermal systems by means of porous media. A
study by Echigo [1] shows that, with an appropriate choice of the
optical thickness of the permeable medium, up to 60 percent of
non-radiating gas energy can be saved owing to the converted
djalikhan Nassab).

son SAS. All rights reserved.
radiation. In that study, the gas scattering effect was neglected.
Thermal insulation in steady high-temperature flow systems was
studied byWang and Tien [4] using a two-flux radiation model and
the scattering effect of the porous layer was also considered in
computations. Yoshida et al. [5] investigated the transient charac-
teristics of heat transfer in porous media. In that work, because of
high porosity of the porous media, the conduction heat transfer in
the radiative converter was neglected. In the non-radiating gas flow
analysis, it was assumed that conduction and convection occur
simultaneously and integral method was used to obtain the net
radiative heat flux in the porous matrix. Transient heat transfer
characteristics of an energy recovery system using porous media
was investigated by Gandjalikhan Nassab [6] in which the two-flux
radiation model was used to calculate the radiative fluxes. Based on
energy conversion phenomena between gas enthalpy and thermal
radiation, new types of gas-to-gas heat exchanger have been
proposed and analyzed by many investigators [7,8]. In a recent
study, a multi-layered type of gas-to-gas heat exchanger was
analyzed by the second author. This system has five porous layers
consisting of two high temperature (HT) and three heat recovery
(HR) sections. In HT sections, the enthalpy of the flowing high
temperature gas flow is converted to thermal radiation and reverse
phenomenon takes place in HR sections by converting thermal
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Fig. 1. Effective energy conversion mechanism [1].
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radiation into gas enthalpy. By this method, the low temperature
air flow into the heat exchanger is heated along three steps. In that
work, the one-dimensional conduction, convection and radiation
heat transfer were taken place simultaneously in both gas and solid
phases [7], and the two-flux radiation model was used for the
computation of radiative fluxes through porous layers, such that
the gas radiation effect was also considered into account. It was
shown that porous heat exchanger with high optical thickness has
a very high efficiency. In all of the above works, for obtaining the
gas and porous temperature distributions along the porous layer,
the gas and porous energy equations was solved numerically, such
that the convective term in gas energy equation was considered by
assuming a simple plug flow through porous matrix. Other
important aspect in porous media is fluid flow simulation. Because
of the complex geometry and random nature of porous media,
simulation of fluid flow by means of NaviereStokes equations is
difficult. In recent years, the lattice Boltzmann method has devel-
oped into an alternative and promising numerical scheme for
simulating fluid flows andmodeling physics in fluids. The scheme is
particularly successful in fluid flow applications involving interfa-
cial dynamics and complex boundaries [9,10].

The first LBM simulation of the fluid flow in porous media was
carried out by Foti and Succi [11]. In that work, Darcy's law was
recovered and a preliminary estimation of the permeability pre-
sented. Numerical simulations of the lattice Boltzmann equation in
three-dimensional porous geometries constructed by the random
positioning penetrable spheres of equal radii were investigated by
Cancelliere et al. [12] and methods for calculating the permeability
were presented. Koponen et al. [13] used the lattice Boltzmann
method on a massively parallel computer to solve ab initio the
permeability of a large random 3D fiber web as a function of its
porosity in a large porosity range. They found that the exponential
dependence on porosity of permeability in a wide range of poros-
ities is a generic feature of fibrous porous materials, independent of
whether they are random or not.

Guo and Zhao [14] have proposed the lattice Boltzmann model
for incompressible flow in porous media. In that work, the influ-
ence of porous medium was incorporated into the model by
introducing a newly defined equilibrium distribution function and
adding a force term into the lattice Boltzmann equation and fluid-
solid interactions is modeled by the force term. Pan et al. [15]
quantitatively evaluated the capability and accuracy of the lattice
Boltzmann equation (LBE) for modeling flow through porous
media. In that work, several fluid-solid boundary conditions were
investigated. They also conducted a comparative study of LBE
models with the multiple-relaxation time (MRT) and Bhatnagar-
Gross-Krook (BGK) single-relaxation time (SRT) collision operators
and found that MRT-LBE model is superior to the BGK-LBE model.
Fluid flow in 2-D random porous media was simulated at pore level
using the LBM byNabovati and Sousa [16]. They showed that for the
same porosity, the permeability of the random porous media is
lower than the permeability of the regularly ordered medium. The
permeability, independently of the porous medium structure, var-
ies exponentially with the porosity. WeieWei Yan et al. [17] have
studied the porous flow through low head loss biofilter medium
using LBM. They showed that LBM is capable of solving the prob-
lems that fluids flowing through porous media with constant
pressure difference. Three-dimensional fluid flow simulations in
fibrous media were conducted using the SRT LBM by Nabovati et al.
[18]. The fibrous media were constructed by random placement of
cylindrical fibers, with random orientations, within the computa-
tional domain. The radius, curvature and length of the fibers were
varied systematically. It was found that fiber curvature has
a negligible impact on the permeability of the medium. To the best
of author's knowledge, the thermal characteristics of porous heat
recovery system have not been obtained by solving the flow
equation using LBM.

In the present study, to determine the performance of an energy
recovery system by porous media, simulation of fluid flow in two-
dimensional random porous medium at pore level scale is done
using lattice Boltzmann method. In the thermal analysis of this
system, the gas and solid phase are assumed in non-local thermal
equilibrium, thus separate energy equations are used for the two
phases. In the numerical simulation of the present heat recovery
system, three modes of heat transfer take place in the solid phase
whereas in the gas phase, heat transfer occurs by conduction and
convection and the gas radiation effect is neglected. Thereby, the
governing energy equations in thermal analysis of the heat
recovery system are two energy equations for the gas and solid
phases and radiative energy equation for solid phase. These equa-
tions are simultaneously solved to determine thermal behavior of
the system. The discrete ordinates method is used to solve the
radiative transfer equation. Two energy equations are iteratively
solved using line by line TDMA. The accuracy of the theoretical
model and the numerical code is confirmed by comparisonwith the
theoretical results of other investigators and good agreement is
found.

2. Simulation of fluid flow by means of lattice
Boltzmann method

2.1. A general overview of the lattice Boltzmann method

In this work, the lattice Boltzmann equation with the multiple-
relaxation time (MRT) is used [15,19],

fðxi þ edt; t þ dtÞ ¼ fðxi; tÞ �M�1$bS$½m�meqðr;uÞ�ðxi; tÞ (1)

In which r and u are the macroscopic density and velocity
respectively, the bold face symbols such as f stand for 9-component
vectors, 9 is the number of discrete velocities, as follows:

f ¼ ðf0; f1;.::; f8ÞT (2)

fðxi þ eadtÞ ¼ ðf0ðxiÞ; f1ðxi þ e1dtÞ;.::; f8ðxi þ e8dtÞÞT (3)

m ¼ ðm0;m1;.::;m8Þ (4)

meq ¼ �
meq

0 ;meq
1 ;.::;meq

8

�
(5)
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where T denotes the transpose operator. In Eq. (1) f is the
9-component vector of the discrete distribution functions, m and
meq are 9-component vectors of moments and their equilibria, M is
the transformationmatrix and bS is the diagonalmatrix of relaxation
rates.

The nine-velocity square lattice Boltzmann (D2Q9) model has
widely and successfully been used for simulating two-dimensional
flows. In the (D2Q9) model, ea denotes the discrete velocity set,
namely,

e0 ¼ ð0;0Þ (6-a)

ea ¼ ð�1;0Þc and ð0;�1Þc for a ¼ 1;2;3;4 (6-b)

ea ¼ ð�1;�1Þc for a ¼ 5;6;7;8 (6-c)

Where c ¼ dx/dt, dx and dt are the lattice spacing and the time
increment which are assumed to be unity.

The moments are arranged in the following order:

m ¼ �
r; e; 3; jx; qx; jy; qy; pxx;pxy

�T (7)

Where m0 ¼ r is the density, m1 ¼ e is related to the total energy,
m2 ¼ 3 is related to energy square, (m3,m5) ¼ (jx,jy) ¼ r(ux,uy) is the
flow momentum, (m4,m6) ¼ (qx,qy) is related to the heat flux, and
m7 ¼ pxx and m8 ¼ pxy are related to the diagonal and off-diagonal
components of the stress tensor, respectively.

The macroscopic density and momentum on each lattice node
are calculated using the following equations:

r ¼
X8
a¼0

fa (8)

j ¼ ru ¼
X8
a¼1

eafa (9)

In addition, in Eq. (1), the equilibrium moments are:

eeq ¼ �2rþ 3
�
j2x þ j2y

��
r; 3eq ¼ r� 3

�
j2x þ j2y

��
r (10)

qeqx ¼ �jx; q
eq
y ¼ �jy (11)

peqxx ¼ �
j2x � j2y

��
r; peqxy ¼ jxjy

�
r (12)

The transform matrix is given by [19]:

M ¼

26666666666664

1 1 1 1 1 1 1 1 1
�4 �1 �1 �1 �1 2 2 2 2
4 �2 �2 �2 �2 1 1 1 1
0 1 0 �1 0 1 �1 �1 1
0 �2 0 2 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1
0 0 �2 0 2 1 1 �1 �1
0 1 �1 1 �1 0 0 0 0
0 0 0 0 0 1 �1 1 �1

37777777777775
(13)

This matrix maps the distribution functions to their moments in
the following form:

m ¼ M$f; f ¼ M�1$m (14)

The diagonal matrix bS of relaxation rates {si} is given by:

bS ¼ diagð0; s1; s2;0; s4;0; s6; s7; s8Þ (15)
Where the relaxation rates s7 ¼ s8 ¼ 1/s determines the dimen-
sionless viscosity of the model:

n ¼
�
s� 1

2

�
c2s dt (16)

The speed of sound in D2Q9 model is cs ¼ c/√3. Pressure and
density are related to each other by the equation of state for an ideal
gas, P ¼ rcs

2. Other relaxation rates s1,s2 and s4 ¼ s6 ¼ sq are usually
indicated by linear stability of the model [19]. In addition, the no-
slip boundary conditions will also determine the choice of s4 ¼ s6
[15].

With the above equilibrium moments, if all relaxation rates are
set to be a single value 1/s, i.e., bS ¼ s�1I, where I is 9 � 9 identity
matrix, then the model is equivalent to an LBGK model with the
following equilibrium distribution function:

f ðeqÞa ¼ rwa

	
1þ 3

c2
ea$uþ 9

2c4
ðea$uÞ2� 3

2c2
u$u



(17)

For D2Q9model, the coefficientsw0¼ 4/9,wa¼ 1/9 for a¼ 1�4, and
wa ¼ 1/36 for a ¼ 5�8.

2.2. Method of solution and boundary conditions

Flow in porous media usually involves three scales: the pore
scale, the representative elementary volume (REV) scale and the
domain scale. In classical studies, flow in porous media is usually
modeled by some semi-empirical models due to the complex
structure of a porous medium, based on volume averaging at the
REV scale [14]. Moreover, several models such as Darcy, Brink-
man-extended Darcy and the Forchheimer-extended Darcy have
also been used to simulate flow through porous media. Usually,
two approaches have been used in lattice Boltzmann simulation
of fluid flow in porous media: the pore scale approach and the
REV approach. In the pore level approach, the fluid between the
pores of the medium is modeled directly by the standard lattice
Boltzmann equation (LBE), and the interaction between the fluid
and solid is modeled by the no-slip bounce-back rule. In the REV
approach, the standard LBE is modified by including an additional
term to account due to the presence of the porous medium. The
pore scale approach is the most straightforward way to apply the
LBM to porous flows. In this study, simulation of fluid flow in
two-dimensional random porous media at pore level is examined.
The first matter in this analysis is to determine the structure of
the porous medium. Since, there is not any regular distribution of
particles in actual porous media; a random generator is used to
produce the porous medium. Two-dimensional square obstacles
are randomly and with free overlapping distributed between two
parallel plates. The random generator must distribute solid
obstacles in the domain uniformly, such that its porous genera-
tion differs, when it runs at different times. A void fraction
function F(x) is used to differentiate solid nodes from fluid nodes,
such that

FðxÞ ¼
�
0 fluid
1 solid (18)

The total volume of filled cells must produce the desired
porosity. The Boundary conditions for the simulation are specific
velocity and pressure at the inlet and outlet sections, respectively,
and no-slip boundary condition at solid-fluid interactions (upper
and lower walls, and solid-fluid boundaries in the interior domain).
Since, in the lattice Boltzmann simulations, the unknowns are
distribution functions, therefore, these boundary conditions should
be represented in the distribution functions.



Fig. 2. Velocity vectors in a duct including porous segment, ReLx ¼ 450.
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At the inlet and outlet sections of the domain, the method
proposed by Lim et al. [20] is used to demonstrate the given
boundary conditions in terms of the distribution functions as
follows:

f1ðx ¼ 0; y; tÞ ¼ f eq1 ðr;u ¼ uinlet; y ¼ 0; x ¼ 0; y; tÞ
f5ðx ¼ 0; y; tÞ ¼ f eq5 ðr;u ¼ uinlet; y ¼ 0; x ¼ 0; y; tÞ
f8ðx ¼ 0; y; tÞ ¼ f eq8 ðr;u ¼ uinlet; y ¼ 0; x ¼ 0; y; tÞ

9>=>; at inlet

(19)

f3ðLX; y; tÞ ¼ f eq3 ðrout;u; y; x ¼ LX; y; tÞ
f6ðLX; y; tÞ ¼ f eq6 ðrout;u; y; x ¼ LX; y; tÞ
f7ðLX; y; tÞ ¼ f eq7 ðrout;u; y; x ¼ LX; y; tÞ

9>=>; at outlet (20)

In Eq. (19), the values of u,v are given due to the specific velocity
boundary condition at the inlet and the density values are extrap-
olated from the flow domain whereas in Eq. (20), the values of
density are given owing to the equation of state, and the u and v
values are obtained using a second order extrapolation from the
interior domain.

The bounce-back boundary condition is used at lower and upper
walls and the solid-fluid interaction in the interior domain:

fa
�
xf ; t þ dt

� ¼ fa
�
xf ; t

�
(21)

Where xf is the fluid node next to the boundary location xb and
ea ¼ �ea. It was shown that the no-slip boundary location is
precisely on half lattice spacing beyond the last flow node if the
following relation is satisfied [15]:

sq ¼ 8
ð2� snÞ
ð8� snÞ (22)

In which sn ¼ s7 ¼ s8 ¼ 1/s determines the shear viscosity and
s4 ¼ s6 ¼ sq is the relaxation rate for qx and qy. It is obvious that the
single-relaxation time collision model cannot satisfy this condition.
Fig. 3. (a) Vector field inside the porous medium, (b)
These boundary conditions with the evolution equation (Eq. (1))
are used to simulate fluid flow in the desired medium.

2.3. Numerical results and verifying the fluid flow computations

The main results of the fluid flow simulation are presented in
this section. Channel dimensions were chosen 0.09 � 0.03 m2

(lenght � height) and obstacle size (dp) is 0.4 mm. Porosity is
assumed to be 0.9 in this study. Calculations were performed using
900 � 300 lattice nodes for ReLx ¼ 450. A typical simulated flow is
shown in Fig. 2. The zoomed observation of the velocity field and
streamlines in the porous medium are also shown in Fig. 3.a-b to
demonstrate the effect of obstacles on the fluid flow.

The validation of computational results of fluid flow in the
porous medium is carried out by comparing the pressure drop
along the porous mediumwith the results of other researchers. The
non-dimensional pressure gradient (�dP/dX) in the porous
medium versus Redp for f ¼ 0.9 is shown in Fig. 4. In order to
calculate (�dP/dX), the non-dimensional pressure difference
between the inlet and outlet of the porous matrix is divided by its
non-dimensional length. The inlet and outlet fluid pressures are
determined using the following equation:

P ¼

Xjmax

j¼1

Pj

jmax
(23)

For validation of the pressure drop, Darcy law with Forchheimer
term is used which are as follows [21e24]:

�V~P ¼ m

k
ug0 þ A$ru2g0 (24)

Where parameter A in Eq. (24) is an empirical function given by:

A ¼ 1:75ð1� fÞ
f3dp

(25)

To determine the permeability k, the two following forms are
used:

k ¼ f3d2p
150ð1� fÞ2

(26)

k ¼ f3d2p
175ð1� fÞ2

(27)
streamlines inside the porous medium, f ¼ 0.9.



Fig. 4. Variation of non-dimensional pressure drop with Redp along porous medium
(f ¼ 0.9).

Table 2
Mean non-dimensional pressure gradient and standard deviation for different
media.

Porosity Mean non-dimensional pressure gradient Standard deviation (%)

0.9 17.5418 6.47
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It should be noted that the relations 25e27 are empirical rela-
tions to model the permeability k and the parameter A for porous
media of spheres. However, it was not found any special equations
for porous media of square cylinders in the literatures. Besides,
these relations were employed for the similar configuration in
Ref. [21].

As Fig. 4 shows, there is nearly a good agreement between the
pressure drop that is calculated in the present analysis and those
calculated based on Eq. (24).

Morover, to investigate the grid dependency of the results, three
different sizes of domain and obstacles were used: 4 � 4 obstacles
in a 360 � 120 domain, 5 � 5 obstacles in a 450 � 150 domain and
6 � 6 obstacles in a 540 � 180 domain. The non-dimensional
pressure gradients for these three grids are summarized in Table 1.
The difference between second and third grid is below 1% therefore,
we use the second one to validate our results. In addition, we
created 12 media with different random obstacle placement for
450� 150 domain and the Reynolds number of 450. Themean non-
dimensional pressure gradient and standard deviation for these
media are shown in the Table 2. The comparison between the non-
dimensional pressure gradient for the random and uniform porous
medium in Table 1 and the mean non-dimensional pressure
gradient for these media shows relatively good agreement.

3. Thermal analysis

3.1. Detailed description of the problem

When a high temperature gas of Tg0 flows through a duct
wherein a porous medium with extremely high porosity is posi-
tioned, a large temperature drop DT occurs along the porous
medium and large amount of converted radiant energy qradð0Þ
propagates to upstream direction of the gas flow.
Table 1
The non-dimensional pressure gradient for different grids.

Grid Obstacle Non-dimensional pressure gradient

360 � 120 4 � 4 17.9890
450 � 150 5 � 5 16.5135
540 � 180 6 � 6 16.4015
Problem under consideration is schematically depicted in Fig. 5.
A random porous medium of length Lx and height Ly is located
between two parallel plates. Dimensions of both plates and porous
medium in normal direction to the gas flow are remarkably large to
ensure the two dimensionality of the problem. The high tempera-
ture gas of Tg0 enters the duct at x ¼ �xi . Fluid flow is laminar and
steady and lattice Boltzmann method was used before to simulate
the flow in random porous medium. The porous segment is
assumed to be gray, emitting, absorbing and isotropically scat-
tering. The high temperature gas is presumed to be non-radiative.
Incoming radiative fluxes from the upstream and downstream
sides towards the porous layer are B1 and B2, respectively. Since, the
gas and solid phases are in non-local thermal equilibrium, separate
energy equations for both solid and gas phases must be considered.
All thermophysical properties of both phases and radiative prop-
erties of solid phase are assumed to be constant.
3.2. Governing equations and boundary conditions

As mentioned before, because of the non-local thermal equi-
librium between solid and gas phases, two separate energy equa-
tions for both phases are considered. Therefore, the governing
equations are energy equation for gas flow and porous medium and
radiative transfer equation for solid phase. To save space, only the
non-dimensional forms of the governing equations are presented
here:

Non-dimensional gas energy equation:

f

Pe

 
v2qg
vh2x

þv2qg
vh2y

!
�
 
U
vqg
vhx

þV
vqg
vhy

!
�P1

�
qg�qp

� ¼ 0 (28)

Non-dimensional solid energy equation:

ð1� fÞP2
 
v2qp
vh2x

þ v2qp
vh2y

!
� V

*
$Qrad þ P3

�
qg � qp

� ¼ 0 (29)

All of the non-dimensional parameters used in Eqs. (28), (29) are
given in the Nomenclature. Two energy equations are coupled
through the convective heat transfer between solid and gas phases.
It should be noted that by considering the convection coefficient
between gas and solid phases, the energy equations are written by
integral method, but for a differential control volume of (dx � dy)
that comprises a number of solid particles based on the medium
porosity. Therefore, the method which is employed for obtaining
Fig. 5. Schematic diagram of a heat recovery system.
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the gas and solid energy equations may be called as integral-
differential one. Besides, the value of convection coefficient is
evaluated by empirical correlation given in Ref [25].

In Eq. (29), V
�
$Qradis the non-dimensional divergence of radia-

tive heat flux that should be calculated from the radiative transfer
equation and can be written in the following form:

V
*
$Qrad ¼

 
vQx

vhx
þ vQy

vhy

!
(30)

The general equation of radiative transfer for an absorbing,
emitting and anisotropically scattering medium is written in
dimensionless form as follows [26]:

bs$V* I*� r!;bs� ¼ �s0I*
�
r!;bs�þ s1I*b

�
r!�

þ s2
4p

Z
u0 ¼4p

I*
�
r!;bs0�4� r!;bs;bs0�dU0 (31)

Eq. (31) is valid for a gray medium or, on a spectral basis, for
a non-gray medium. Once the intensities have been determined
from Eq. (31), the radiative heat flux inside the medium may be
found from Eq. (32):

Qradð r!Þ ¼
Z
4p

I*
�
r!;bs�bsdU (32)

To solve the gas energy equation, the following boundary
conditions are used:

qg ¼ 1 at hx ¼ 0 (33)

vqg
vhx

¼ Nu
�
qp � qg

�
at hx ¼ 1 (34)

vqg
vhy

¼ P5
�
qg � qN

�
at hy ¼ 0 (35)

vqg
vhy

¼ �P5
�
qg � qN

�
at hy ¼ hLy (36)

Eq. (34) represents heat transfer between gas and solid phases
at the exit section of the porous matrix, which includes conduction
heat transfer of the gas phase (the partial derivative term) and
energy transfer between gas and solid phases by convection.

For the solid phase at locations hx ¼ 0 and 1, where heat transfer
between the gas and solid phase is by convection and heat transfer
between porous matrix and its surrounding is by radiation,
following boundary conditions are employed:

Bi
�
1� qp0

�þ 3pi

P2

�
q4i � q4p0

�
¼ �vqp

vhx
at hx ¼ 0 (37)

Bi
�
qpL � qgL

�þ 3pe

P2

�
q4pL

� q4e

�
¼ �vqp

vhx
at hx ¼ 1 (38)

On the upper and lower walls, the following boundary condi-
tions are considered:

vqp
vhy

¼ P4
�
qp � qN

�
at hy ¼ 0 (39)

vqp
vhy

¼ �P4
�
qp � qN

�
at hy ¼ hLy (40)
Partial derivative term that is used in Eqs. (34)e(40) shows the
conduction heat transfer of gas and solid phases. In addition, Eqs.
(35), (36), (39) and (40) showheat transfer between thegas and solid
phaseswith the environment at lower andupperwalls, respectively.

To solve the radiative transfer equation, appropriate boundary
conditions are needed. It is assumed that incoming radiations B1
and B2 are applied to the system from the inlet and outlet sections
of the porous medium, respectively. Therefore, the radiative
boundary conditions at the four boundaries are as follows:

I*m
�
0; hy

� ¼ B01
p

at hx ¼ 0 (41)

I*m
�
1; hy

� ¼ B02
p

at hx ¼ 1 (42)

I*mðhx;0Þ ¼ 3B
sq4B
p

þ rB
p

Z
bn$bs 0<0

jbn$bs0j I*�hx;0;bs0�dU0 at hy ¼ 0

(43)

I*m
�
hx;hLy

� ¼ 3T
sq4T
p

þ rT
p

Z
bn$bs 0<0

jbn$bs0jI*�hx;hLy ;bs0�dU0 at hy ¼ hLy

(44)

3.3. Discrete ordinates method (SN approximation)

One of the methods that are commonly used to solve the radi-
ative transfer equation (RTE) is the discrete ordinates method
(DOM). The DOM is based on a discrete representation of the
directional variation of the radiative intensity. Most of credit in our
opinion for the introduction and development of DOM go to
Chandrasekhar [26], who used this method in his fundamental
work on radiative transfer equation. Today, DOM is a well known
technique to solve the RTE such that the details of this method are
completely described in Ref. [27]. This method transforms the
equation of transfer into a set of simultaneous partial differential
equations. The name SN approximation indicates that N different
direction cosines are used for each principal direction. Altogether,
there are n ¼ N(Nþ2) different directions to be considered, for
radiant intensities. A solution to the transport problem is found by
solving the equation of transfer for a set of discrete directions
spanning the total solid angle range of4p. Integrals over solid angle
are approximated by numerical quadrature. Using the discrete
ordinates method, the general equation of transfer (Eq. (31)) is
solved for a set of n different directions bsi, i¼ 1, 2,., n, such that the
integrals over direction are replaced by quadratures as follows:Z
4p

f
�bs�dUzXn

i¼1

wif
�bsi� (45)

Where the wi are the quadrature weights associated with the
directions bsi. In this way, Eq. (31) is approximated by a set of n
differential equations as follows:

bsi$V* I*� r!;bsi� ¼ �s0I*
�
r!;bsi�þ s1I*bð r!Þ

þ s2
4p

Xn
j¼1

wjI
*
�
r!;bsj�4� r!;bsi;bsj� i ¼ 1;2;.;n

(46)
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Once the intensities have been determined in the desired
directions, integrated quantities can be readily calculated. Then, the
radiative flux method inside the medium may be found from:

Qradð r!Þ ¼
Z
4p

I*
�
r!;bsi�bsidUzXn

i¼1

wiI
*
i ð r!Þbsi (47)

For the two-dimensional Cartesian coordinates system, Eq. (46)
becomes

xm
vI*m

vhx
þ hm

vI*m

vhy
¼ �s0I*m þ s1I*b þ

s2
4p

X
m0

wm0
4m0mI*m

0
(48)

Wherem,m
0
denote outgoing and incoming directions, respectively.

The finite difference form of Eq. (48) gives the following form for
radiant intensity:

I*mi;j ¼
IXm þ IYm þ s1I*b;i;j þ S*m

s0 þ XmSign
�
Xm
�þ YmSign

�
Ym
� (49)

Where

IXm ¼ Xmu0
�
Xm�I*mi�1;j � Xmu0

��Xm�I*miþ1;j

IYm ¼ Ymu0
�
Ym�I*mi;j�1 � Ymu0

��Ym�I*mi;jþ1

Xm ¼ xm

Dhx

Ym ¼ hm

Dhy

S*m ¼ s2
4p

X
m'

wm0
4m0mI*m

0
i;j

u0ðxÞ ¼
�
1 x > 0
0 x < 0

SignðxÞ ¼
�
1 x > 0
�1 x < 0

The details of numerical solution of RTE by DOM were also
described in the previous work by the second author in which
the thermal characteristics of porous radiant burner were inves-
tigated [28].

3.4. Solution strategy

In the thermal analysis of the heat recovery system, to deter-
mine the values of dependent variables qg, qp and Qrad at each nodal
point in the 2-D computational domain, the couple equations (28),
(29) and (31) should be solved simultaneously.

The numerical solution of Eq. (48) can be started with the black
body assumption for the boundaries with neglecting the source
termS*. In the next iterations, the general form of Eq. (49) and its
boundary conditions are applied. This procedure is repeated until
the convergence criterion is met. Finally, from the radiative inten-
sities obtained by Eq. (49), the divergence of the radiative heat flux
can be calculated from the following equation:

V
*
$Qrad ¼ 4ps1

 
I*b �

1
4p

X
m0

wm0
I*m

0
!

(50)
For solving the gas energy equation (Eq. (28)), u- and v- velocity
components at each nodal point through the porous medium are
needed. These values are obtained using the lattice Boltzmann
method. As mentioned in Section 3.2, the energy equations are
written by integral method, but for a differential control volume of
(dx � dy) that comprises a number of solid particles based on the
medium porosity. Considering this point, each control volume
contains some pore and void nodes. Velocity values at these nodes
are obtained using LBM and then by averaging between the
velocities of these nodes at each control volume (volume-averaged
velocity), one can obtain the velocities that are used in gas energy
equation. It should be noted that gas and solid energy equations
along with radiative transfer equation are solved after the time-
independent velocity are obtained by the lattice Boltzmann
method.

Finite difference forms of the gas and solid energy equations are
obtained using central differencing for derivative terms where the
error of discretization is the order of (Dhx2) and (Dhy2). For obtaining
the grid independent solution, a uniform grid of 80 � 60 nodal
points in the computational domain is used.

The sequence of calculations can be stated as follows:

1. A first approximation of each dependent variable qg and qp is
assumed.

2. S6 approximation is used to solve the radiative transfer equa-
tion to obtain the values of I*, Qrad and V$Qrad at each nodal
point.

3. Using the values of V$Qrad, the solid energy equation is solved
and the values of qp are calculated.

4. The values of qg are computed by numerical solution of the gas
energy equation.

5. Steps 2e4 are repeated until convergence is obtained. This
condition was assumed to have been achieved when the frac-
tional changes in the temperature and radiative intensity
between the two consecutive iteration levels did not exceed
10�6 at each nodal point.
4. Validation of the computational results

Since, we could not find any theoretical or experimental results
for such a two-heat recovery system in literatures, the present
numerical results are compared with theoretical predictions in
Ref. [29] about a 2-D porous radiant burner. It should be noted that
the non-dimensional form of the governing equations for the
porous radiant burner are the same as used for the heat recovery
system, except that an additional term fP6d(hx) that accounts for
the heat generation term (Q_ ) in the combustion zone of the radiant
burner must be added where P6 and d(hx) are as follows:

P6 ¼
_QLx

Tg0rgugcg

dðhxÞ ¼
�
1 0:5 < hx < 0:5þ Dxflame=Lx
0 elsewhere

For the test case under consideration, Lx ¼ 0.1 m, Ly ¼ 0.1 m and
the thickness of the heat generation zone (Dxflame) was set to
0.01m. The non-dimensional parameters for this test case are given
in Table 3 [29]. The gas temperature distributions along the burner
at the mid-plane (hy ¼ 0.5) are presented in Fig. 6. It is seen that the
incoming air-fuel mixture is preheated by radiation in the region
upstream to the combustion zone. The maximum temperature
takes place inside the heat generation domain after which the gas
temperature decreases by converting gas enthalpy to thermal



Table 3
Non-dimensional parameters of the test case from Talukdar et al. [29].

Parameter Value

P1 102.80
P2 666.45
P3 3.33 � 104

P4 0.00
P5 0.00
P6 103.48
Pe 38.91
Nu 400.00
Bi 5.00
B

0
1 1.00

B
0
2 1.00

b 0.00

Table 4
Non-dimensional parameters of the present heat recovery system [29].

Parameter Value

P1 2.73 � 106

P2 5.88
P3 10.23 � 106

P4 0.00
P5 0.00
Pe 88.34
Nu 2074.69
Bi 15.00
B

0
1 0.00

B
0
2 0.00
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radiation. However, Fig. 6 shows a good agreement between the
present results and those obtained theoretically in Ref. [29].
5. Results and discussion

The thermal behavior of a heat recovery system which works
based on the energy conversion between gas enthalpy and thermal
radiation are analyzed here. In the 2-D rectangular heat recovery
system considered in this study, there are many independent
parameters, but it is possible to present only some results for awide
range of conditions. Table 4 [29] shows the non-dimensional
parameters that are used in this study. The porous medium is
considered non-scattering, except in Figs. 10 and 11 in which the
effect of scattering is considered. It should be noted that the values
of aspect ratio r ¼ Lx/Ly is always kept to 1. The temperature of
working gas at the inlet section of the porous matrix is equal
to 1000 K.

The variations of qg, qp along the porous matrix at centerline
(hy ¼ 0.5) are shown in Fig. 7 for two different values of the optical
thickness s0. There is a considerable temperature drop in the gas
flow, especially at the entrance of the porous matrix. This
Fig. 6. Gas temperature distribution along the porous radiant burner with uniform
heat generation.
characteristic constitutes the basic principle to support an effec-
tive energy conversion from gas enthalpy to thermal radiation. The
sharp gas temperature drop at the entrance region of the porous
segment causes to have a considerable amount of the recaptured
radiative flux from the porous media ðQ�

radð0ÞÞ towards the
upstream direction (into the thermal system). It should be noted
that it is desirable to have a large amount of radiation emitted
from the porous segment in the upstream direction to minimize
the energy that may otherwise be wasted. Further, it is worth
having a close look at the small temperature difference between
gas and porous temperatures which is due to the large convection
heat transfer coefficient. This figure also shows that the higher
optical thickness results in more decrease in the temperature of
working gas.

In Fig. 8 the variations of radiative fluxes Qþ
rad and Q�

rad along the
layer and at the mid-plane (hy ¼ 0.5) are presented for the optical
thickness of s0 ¼ 2. The radiative heat flux Q�

rad has its maximum
value at the entrance of the porous layer. It is a useful behavior of
this recovery system because Q�

radð0Þ is the recovered radiative
energy.

Isotherm lines for the two-dimensional porous media under
consideration are shown in Fig. 9. This figure shows that there is not
any considerable variation of gas temperature along the y-axis.
Besides, the non-regular curvature of the isotherms is due to the
Fig. 7. Distribution of gas and solid temperatures along the porous matrix at the mid-
plane (hy ¼ 0.5), u ¼ 0.00.



Fig. 8. Variation of radiative heat flux inside the porous medium at the mid-plane
(hy ¼ 0.5), u ¼ 0.00, s0 ¼ 2.00.

Fig. 10. The effect of scattering albedo on gas temperature drop through the porous
matrix, (hy ¼ 0.5), s0 ¼ 1.00.
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random variation of gas velocity according to the random existence
of solid particles in different locations. Also, the gas temperature
drop along the flow direction can easily be seen through the porous
segment.

To study the effect of scattering albedo (u) on the energy
conversion from gas enthalpy to thermal radiation, the gas
temperature drop across the porous layer as a function of u is
shown in Fig. 10. It can be seen that values of enthalpy drop
decrease with increasing u. For further study of the effect of
thermal scattering on the performance of the heat recovery
system, the variations of Qþ

radðhx ¼ 1Þ and Q�
radðhx ¼ 0Þ with

scattering albedo are presented in Fig. 11. It should be mentioned
that Qþ

radðhx ¼ 1Þ and Q�
radðhx ¼ 0Þ are the outgoing radiative
Fig. 9. Contours of gas temperature in the 2-D heat recovery system, u ¼ 0.00,
s0 ¼ 2.00.
fluxes from two ends of the porous segment, one to the down-
stream and the other to the upstream directions. It is seen from
Fig. 11 that, the higher value of scattering albedo causes a decrease
in the value of Q�

radðhx ¼ 0Þ. Therefore, it can be concluded that
the porous layers with low scattering coefficients are suitable for
this energy conversion such that the maximum values of
temperature drop are obtained by using non-scattering media
(u ¼ 0).

As mentioned before, the porous media that emit more
backward radiative flux Q�

radðhx ¼ 0Þ are more efficient for heat
recovery purpose; this action can be achieved when the porous
layers with high optical thickness are used as it is seen in
Fig. 12.
Fig. 11. Variation of radiative heat flux at the inlet and outlet sections of the porous
segment with scattering albedo, (hy ¼ 0.5), s0 ¼ 1.00.



Fig. 12. The effect of optical thickness on the radiative heat flux at the inlet of the
porous medium u ¼ 0.00.
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6. Conclusions

A numerical study has been fulfilled to explore the fluid and
thermal behaviors of a two-dimensional porous heat recovery
system. Lattice Boltzmann method was applied to simulate fluid
flow in the porous medium and the effect of obstacles on the flow
field were considered. Since, gas and solid phases are not in local
thermal equilibrium, two separate energy equations were consid-
ered for these phases. Gas phase was assumed to be non-radiative
whereas solid phase can absorb, emit and scatter thermal radiation.
Discrete ordinates method was employed to solve the radiative
transfer equation for computing the radiative heat flux distribution
in the porous medium. The efficiency of the porous heat recovery
system depends on the recovered radiative energy. To this end, the
effect of optical thickness and scattering albedo on the performance
of the heat recovery system was examined. It was found that the
amount of the recaptured radiative flux from inlet section of the
porous medium towards the upstream direction increases by
choosing the porous medium with higher optical thickness.
Furthermore, the higher value of scattering albedo makes
a decrease in the value of recovered radiative energy. It can be
concluded that porous layers with high optical thickness and low
scattering albedo are more efficient in recovering heat from high
temperature gases.
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Nomenclature

A: surface area per unit volume (m2/m3)
B1,2: incoming radiations (W/m2)
B

0
1,2: non-dimensional incoming radiations, B1,2/sTg0

4

Bi: Biot number, hLx/kp
cs: sound speed
cg: specific heat of gas (J/kg �C)
dp: obstacle size (m)
e: total energy
ea: discrete particle velocity in LBM
f: density distribution function
F: fraction function
h: convective heat transfer coefficient (W/m2 �C)
I: intensity (W/m2)
I*: non-dimensional intensity, I/sTg0

4

j: index of grids in y direction
jmax: number of grids in y direction
jx: flow momentum in x direction
jy: flow momentum in y direction
Kg: gas thermal conductivity (W/m �C)
Kp: solid thermal conductivity (W/m �C)
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Lx: length of the porous medium (m)
Ly: height of the porous medium (m)
m: moment
Nu: Nussult number, hLx/kg
P: non-dimensional pressure, ~P=ru2g0
~P: pressure (pa)
pxx: diagonal component of the stress tensor
pxy: off-diagonal component of the stress tensor
P1: dimensionless group, hLxA/rgcgug0(Dx$Dy)
P2: dimensionless group, KpLx/sTg03

P3: dimensionless group, hLxA/sTg0
3(Dx$Dy)

P4: dimensionless group, hwpLx/kp
P5: dimensionless group, hwgLx/kg
Pe: Peclet number, rgug0cgLx/kg
qrad: radiative heat flux (W/m2)
qx: heat flux in x direction
qy: heat flux in y direction
Qrad: dimensionless radiative heat flux, qrad/sTg0

4

r: aspect ratio, Lx/Ly
ReLx: Reynolds number, ug0Lx/y
Redp: Reynolds number, ug0dp/ybsi: direction vector in RTE
T: temperature (�C)
TN: ambient temperature (�C)
Tg0`: gas temperature at duct's inlet (�C)
ug: velocity along x direction (m/s)
ug0: gas velocity at duct's inlet (m/s)
vg: velocity along y direction (m/s)

U: non-dimensional x velocity, u/ug0
V: non-dimensional y velocity, v/ug0
x: coordinate along the flow direction (m)
X: non-dimensional length, Lx/Ly
y: coordinate perpendicular to the flow direction (m)

Greek symbols
a: particle velocity direction
b: extinction coefficient, sa þ ss
V*: non-dimensional gradient operator, LxV
Dx: grid spacing along x-axis (m)
Dy: grid spacing along y-axis (m)
Dhx: non-dimensional grid spacing along x-axis, Dx/Lx
Dhy: non-dimensional grid spacing along y-axis, Dy/Lx
dt: time step
dx: lattice spacing
3: energy square
3: emissivity
hx: non-dimensional x coordinate, x/Lx
hy : non-dimensional y coordinate, y/Lx
n: kinematical viscosity (m2/s)
f: porosity
4: scattering phase function
rg: gas density (m3/kg)
rw: wall reflection coefficient
s: Stephan-Boltzmann coefficient (w/m2K4)
sa: absorption coefficient (m�1)
ss: scattering coefficient (m�1)
qg,p: non-dimensional temperature, Tg,p/Tg0
s: non-dimensional relaxation time
s0: optical thickness, bLx
s1: non-dimensional parameter, saLx
s2: non-dimensional parameter, ssLx
w: weighting constant

Subscripts
b: black body
B: bottom
e: exit of the porous matrix
g: gas
i: inlet of the porous matrix
p: solid
T: top

Superscripts
eq: equilibrium
in: incoming velocity direction
m: outgoing radiation direction
m

0
: incoming radiation direction

out: outgoing velocity direction
þ: downstream direction
�: upstream direction
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